Understanding the complex dynamics of zebra mussel invasions over several decades in European rivers: drivers, impacts and predictions
Phillip J. Haubrock
Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany
Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší, Vodňany, Czech Republic
Department of Mathematics and Natural Sciences, Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Hawally, Kuwait
Contribution: Conceptualization (equal), Formal analysis (equal), Supervision (equal), Writing - original draft (equal), Writing - review & editing (equal)
Search for more papers by this authorIsmael Soto
Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší, Vodňany, Czech Republic
Contribution: Data curation (equal), Formal analysis (equal), Methodology (equal), Writing - original draft (equal)
Search for more papers by this authorMelina Kourantidou
Université de Bretagne Occidentale, UMR 6308 AMURE, IUEM, Plouzané, France
Department of Sociology, Environmental and Business Economics, University of Southern Denmark, Esbjerg, Denmark
Contribution: Validation (equal), Writing - original draft (equal), Writing - review & editing (equal)
Search for more papers by this authorDanish A. Ahmed
Department of Mathematics and Natural Sciences, Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Hawally, Kuwait
Contribution: Conceptualization (equal), Formal analysis (equal), Writing - original draft (equal), Writing - review & editing (equal)
Search for more papers by this authorAli Serhan Tarkan
Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
Contribution: Supervision (equal), Validation (equal), Visualization (equal), Writing - original draft (equal), Writing - review & editing (equal)
Search for more papers by this authorParide Balzani
Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší, Vodňany, Czech Republic
Contribution: Supervision (equal), Writing - original draft (equal), Writing - review & editing (equal)
Search for more papers by this authorKristi Bego
Senckenberg Geselleschaft fur Naturforschung (SNG) Senckenberganlage, Frankfurt, Germany
Contribution: Data curation (equal), Formal analysis (equal), Writing - original draft (equal)
Search for more papers by this authorAntonín Kouba
Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší, Vodňany, Czech Republic
Contribution: Visualization (equal), Writing - review & editing (equal)
Search for more papers by this authorSadi Aksu
Vocational School of Health Services, Eskişehir Osmangazi University, Eskişehir, Turkey
Contribution: Data curation (equal), Formal analysis (equal), Writing - original draft (equal)
Search for more papers by this authorElizabeta Briski
GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Kiel, Germany
Contribution: Conceptualization (equal), Visualization (equal), Writing - review & editing (equal)
Search for more papers by this authorFrancisco Sylvester
Consejo Nacional de Investigaciones Científcas y Técnicas (CONICET), Salta, Argentina
Contribution: Visualization (equal), Writing - original draft (equal), Writing - review & editing (equal)
Search for more papers by this authorVanessa De Santis
Water Research Institute of the National Research Council of Italy (IRSA-CNR), Largo Tonolli, Verbania-Pallanza, Italy
Contribution: Supervision (equal), Writing - review & editing (equal)
Search for more papers by this authorGaït Archambaud-Suard
INRAE, Aix Marseille Univ, RECOVER, Aix-en-Provence, France
Contribution: Data curation (equal), Writing - review & editing (equal)
Search for more papers by this authorNúria Bonada
Departament de Biologia Evolutiva, FEHM-Lab (Freshwater Ecology, Hydrology and Management), Ecologia i Ciències Ambientals, Facultat de Biologia, Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
Contribution: Supervision (equal), Validation (equal), Writing - original draft (equal)
Search for more papers by this authorMiguel Cañedo-Argüelles
FEHM-Lab (Freshwater Ecology, Hydrology and Management), Institute of Environmental Assessment and Water Research (IDAEA), CSIC, Barcelona, Spain
Contribution: Formal analysis (equal), Visualization (equal), Writing - review & editing (equal)
Search for more papers by this authorZoltán Csabai
Department of Hydrobiology, University of Pécs, Pécs, Hungary
Balaton Limnological Research Institute, Tihany, Hungary
Contribution: Data curation (equal), Writing - review & editing (equal)
Search for more papers by this authorThibault Datry
INRAE, UR RiverLy, Centre de Lyon-Villeurbanne, Villeurbanne, France
Contribution: Writing - review & editing (equal)
Search for more papers by this authorMathieu Floury
University of Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, Villeurbanne, France
Contribution: Writing - review & editing (equal)
Search for more papers by this authorJean-François Fruget
ARALEP, Ecologie des Eaux Douces, Campus LyonTech-La Doua, Villeurbanne, France
Contribution: Writing - review & editing (equal)
Search for more papers by this authorJohn Iwan Jones
School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
Contribution: Writing - review & editing (equal)
Search for more papers by this authorMarie-Helene Lizee
INRAE, Aix Marseille Univ, RECOVER, Aix-en-Provence, France
Contribution: Writing - review & editing (equal)
Search for more papers by this authorAnthony Maire
EDF R and D, Laboratoire National d'Hydraulique et Environnement (LNHE), Chatou, France
Contribution: Formal analysis (equal), Writing - review & editing (equal)
Search for more papers by this authorJohn F. Murphy
School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
Contribution: Writing - review & editing (equal)
Search for more papers by this authorDavis Ozolins
Institute of Biology, University of Latvia, Riga, Latvia
Contribution: Writing - review & editing (equal)
Search for more papers by this authorJes Jessen Rasmussen
Norwegian Institute for Water Research (NIVA Denmark), Copenhagen, Denmark
Contribution: Supervision (equal), Writing - review & editing (equal)
Search for more papers by this authorAgnija Skuja
Institute of Biology, University of Latvia, Riga, Latvia
Contribution: Writing - review & editing (equal)
Search for more papers by this authorGábor Várbíró
Department of Tisza River Research, Centre for Ecological Research, Institute of Aquatic Ecology, Debrecen, Hungary
Contribution: Writing - review & editing (equal)
Search for more papers by this authorPiet Verdonschot
Wageningen Environmental Research, Wageningen University and Research, Wageningen, Netherlands
Contribution: Writing - review & editing (equal)
Search for more papers by this authorRalf C. M. Verdonschot
Wageningen Environmental Research, Wageningen University and Research, Wageningen, Netherlands
Contribution: Writing - review & editing (equal)
Search for more papers by this authorPeter Wiberg-Larsen
Department of Ecoscience, Aarhus University, Silkeborg, Denmark
Contribution: Supervision (equal), Writing - review & editing (equal)
Search for more papers by this authorRoss N. Cuthbert
Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
Contribution: Supervision (equal), Validation (equal), Writing - original draft (equal), Writing - review & editing (equal)
Search for more papers by this authorPhillip J. Haubrock
Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany
Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší, Vodňany, Czech Republic
Department of Mathematics and Natural Sciences, Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Hawally, Kuwait
Contribution: Conceptualization (equal), Formal analysis (equal), Supervision (equal), Writing - original draft (equal), Writing - review & editing (equal)
Search for more papers by this authorIsmael Soto
Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší, Vodňany, Czech Republic
Contribution: Data curation (equal), Formal analysis (equal), Methodology (equal), Writing - original draft (equal)
Search for more papers by this authorMelina Kourantidou
Université de Bretagne Occidentale, UMR 6308 AMURE, IUEM, Plouzané, France
Department of Sociology, Environmental and Business Economics, University of Southern Denmark, Esbjerg, Denmark
Contribution: Validation (equal), Writing - original draft (equal), Writing - review & editing (equal)
Search for more papers by this authorDanish A. Ahmed
Department of Mathematics and Natural Sciences, Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Hawally, Kuwait
Contribution: Conceptualization (equal), Formal analysis (equal), Writing - original draft (equal), Writing - review & editing (equal)
Search for more papers by this authorAli Serhan Tarkan
Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
Contribution: Supervision (equal), Validation (equal), Visualization (equal), Writing - original draft (equal), Writing - review & editing (equal)
Search for more papers by this authorParide Balzani
Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší, Vodňany, Czech Republic
Contribution: Supervision (equal), Writing - original draft (equal), Writing - review & editing (equal)
Search for more papers by this authorKristi Bego
Senckenberg Geselleschaft fur Naturforschung (SNG) Senckenberganlage, Frankfurt, Germany
Contribution: Data curation (equal), Formal analysis (equal), Writing - original draft (equal)
Search for more papers by this authorAntonín Kouba
Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší, Vodňany, Czech Republic
Contribution: Visualization (equal), Writing - review & editing (equal)
Search for more papers by this authorSadi Aksu
Vocational School of Health Services, Eskişehir Osmangazi University, Eskişehir, Turkey
Contribution: Data curation (equal), Formal analysis (equal), Writing - original draft (equal)
Search for more papers by this authorElizabeta Briski
GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Kiel, Germany
Contribution: Conceptualization (equal), Visualization (equal), Writing - review & editing (equal)
Search for more papers by this authorFrancisco Sylvester
Consejo Nacional de Investigaciones Científcas y Técnicas (CONICET), Salta, Argentina
Contribution: Visualization (equal), Writing - original draft (equal), Writing - review & editing (equal)
Search for more papers by this authorVanessa De Santis
Water Research Institute of the National Research Council of Italy (IRSA-CNR), Largo Tonolli, Verbania-Pallanza, Italy
Contribution: Supervision (equal), Writing - review & editing (equal)
Search for more papers by this authorGaït Archambaud-Suard
INRAE, Aix Marseille Univ, RECOVER, Aix-en-Provence, France
Contribution: Data curation (equal), Writing - review & editing (equal)
Search for more papers by this authorNúria Bonada
Departament de Biologia Evolutiva, FEHM-Lab (Freshwater Ecology, Hydrology and Management), Ecologia i Ciències Ambientals, Facultat de Biologia, Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
Contribution: Supervision (equal), Validation (equal), Writing - original draft (equal)
Search for more papers by this authorMiguel Cañedo-Argüelles
FEHM-Lab (Freshwater Ecology, Hydrology and Management), Institute of Environmental Assessment and Water Research (IDAEA), CSIC, Barcelona, Spain
Contribution: Formal analysis (equal), Visualization (equal), Writing - review & editing (equal)
Search for more papers by this authorZoltán Csabai
Department of Hydrobiology, University of Pécs, Pécs, Hungary
Balaton Limnological Research Institute, Tihany, Hungary
Contribution: Data curation (equal), Writing - review & editing (equal)
Search for more papers by this authorThibault Datry
INRAE, UR RiverLy, Centre de Lyon-Villeurbanne, Villeurbanne, France
Contribution: Writing - review & editing (equal)
Search for more papers by this authorMathieu Floury
University of Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, Villeurbanne, France
Contribution: Writing - review & editing (equal)
Search for more papers by this authorJean-François Fruget
ARALEP, Ecologie des Eaux Douces, Campus LyonTech-La Doua, Villeurbanne, France
Contribution: Writing - review & editing (equal)
Search for more papers by this authorJohn Iwan Jones
School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
Contribution: Writing - review & editing (equal)
Search for more papers by this authorMarie-Helene Lizee
INRAE, Aix Marseille Univ, RECOVER, Aix-en-Provence, France
Contribution: Writing - review & editing (equal)
Search for more papers by this authorAnthony Maire
EDF R and D, Laboratoire National d'Hydraulique et Environnement (LNHE), Chatou, France
Contribution: Formal analysis (equal), Writing - review & editing (equal)
Search for more papers by this authorJohn F. Murphy
School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
Contribution: Writing - review & editing (equal)
Search for more papers by this authorDavis Ozolins
Institute of Biology, University of Latvia, Riga, Latvia
Contribution: Writing - review & editing (equal)
Search for more papers by this authorJes Jessen Rasmussen
Norwegian Institute for Water Research (NIVA Denmark), Copenhagen, Denmark
Contribution: Supervision (equal), Writing - review & editing (equal)
Search for more papers by this authorAgnija Skuja
Institute of Biology, University of Latvia, Riga, Latvia
Contribution: Writing - review & editing (equal)
Search for more papers by this authorGábor Várbíró
Department of Tisza River Research, Centre for Ecological Research, Institute of Aquatic Ecology, Debrecen, Hungary
Contribution: Writing - review & editing (equal)
Search for more papers by this authorPiet Verdonschot
Wageningen Environmental Research, Wageningen University and Research, Wageningen, Netherlands
Contribution: Writing - review & editing (equal)
Search for more papers by this authorRalf C. M. Verdonschot
Wageningen Environmental Research, Wageningen University and Research, Wageningen, Netherlands
Contribution: Writing - review & editing (equal)
Search for more papers by this authorPeter Wiberg-Larsen
Department of Ecoscience, Aarhus University, Silkeborg, Denmark
Contribution: Supervision (equal), Writing - review & editing (equal)
Search for more papers by this authorRoss N. Cuthbert
Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
Contribution: Supervision (equal), Validation (equal), Writing - original draft (equal), Writing - review & editing (equal)
Search for more papers by this authorThis study presents a novel and comprehensive analysis of the complex dynamics underlying the invasion of zebra mussels across European waterways over several decades. By utilising a large dataset from various biomonitoring programs, the research uniquely identifies and evaluates the spatial-temporal trends, drivers of success, and ecological impacts of Dreissena polymorpha invasions. Through meta-regression modeling and ecological niche modeling, the work forecasts future invasion scenarios under changing climate conditions, offering critical insights into managing and mitigating the effects of one of Europe’s most impactful invasive species.
Abstract
The zebra mussel Dreissena polymorpha is one of the most successful, notorious, and detrimental aquatic invasive non-native species worldwide, having invaded Europe and North America while causing substantial ecological and socio-economic impacts. Here, we investigated the spatiotemporal trends in this species' invasion success using 178 macroinvertebrate abundance time series, containing 1451 records of D. polymorpha collected across nine European countries between 1972–2019. Using these raw (absolute) abundance data, we examined trends and drivers of occurrences and relative abundances of D. polymorpha within invaded communities. Meta-regression models revealed non-significant trends both at the European level and for the majority of the invaded countries, except for France (significant decreasing trend) and Hungary (marginally positive trend). At the European level, the number of D. polymorpha occurrences over time followed a flat-top bell-shaped distribution, with a steep increase between 1973–1989 followed by a plateau phase prior to significantly declining post-1998. Using a series of climatic and hydromorphological site-specific characteristics of invaded and uninvaded sites from two periods (1998–2002; 2011–2015), we found that native richness, non-native abundance, distance to the next barrier, and elevation were associated with the occurrence of D. polymorpha. We also found that higher native richness and lower latitude were related to lower relative abundances. Using Cohen's D as a measure of D. polymorpha impact, we found that biodiversity within the invaded sites was initially higher than in uninvaded ones, but then declined, suggesting differences in biodiversity trends across invaded and uninvaded sites. While our results emphasise the high invasion success of D. polymorpha, increasing stressors within the context of global change – particularly ongoing climate change – are likely to enhance invasion rates and the impact of D. polymorpha in the near future, exacerbated by the lack of timely and effective management actions.
Open Research
Data availability statement
The data and R code can be found at Github: https://github.com/IsmaSA/Dreissena-polymorpha (Haubrock et al. 2023).
Supporting Information
Filename | Description |
---|---|
oik13686-sup-0001-AppendixS1.docx2 MB | Supplementary Material |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- Adams, D. C. and Lee, D. J. 2012. Technology adoption and mitigation of invasive species damage and risk: application to zebra mussels. – J. Bioecon. 14: 21–40.
10.1007/s10818-011-9117-x Google Scholar
- Aldridge, D. C., Elliott, P. and Moggridge, G. D. 2004. The recent and rapid spread of the zebra mussel (Dreissena polymorpha) in Great Britain. – Biol. Conserv. 119: 253–261.
- Aldridge, D. C., Elliott, P. and Moggridge, G. D. 2006. Microencapsulated BioBullets for the control of biofouling zebra mussels. – Environ. Sci. Technol. 40: 975–979.
- Alexandre da Silva, M. V., Nunes Souza, J. V., de Souza, J. R. B. and Vieira, L. M. 2019. Modelling species distributions to predict areas at risk of invasion by the exotic aquatic New Zealand mud snail Potamopyrgus antipodarum (Gray 1843). – Freshwater Biol. 64: 1504–1518.
- Alofs, K. M. and Jackson, D. A. 2014. Meta-analysis suggests biotic resistance in freshwater environments is driven by consumption rather than competition. – Ecology 95: 3259–3270.
- Amatulli, G., Garcia Marquez, J., Sethi, T., Kiesel, J., Grigoropoulou, A., Üblacker, M. M., Shen, L. Q. and Domisch, S. 2022. Hydrography90m: a new high-resolution global hydrographic dataset. – Earth System Science Data 14 (10): 4525–4550.
- Bailey, S. A. 2015. An overview of thirty years of research on ballast water as a vector for aquatic invasive species to freshwater and marine environments. – Aquat. Ecosyst. Health Manage. 18: 261–268.
- Balzani, P., Haubrock, P. J., Russo, F., Kouba, A., Haase, P., Veselý, L., Masoni, A. and Tricarico, E. 2021. Combining metal and stable isotope analyses to disentangle contaminant transfer in a freshwater community dominated by alien species. – Environ. Pollut. 268: 115781.
- Banha, F., Gimeno, I., Lanao, M., Touya, V., Durán, C., Peribáñez, M. A. and Anastácio, P. M. 2016. The role of waterfowl and fishing gear on zebra mussel larvae dispersal. – Biol. Invas. 18: 115–125.
- Barney, J. N., Ho, M. W. and Atwater, D. Z. 2016. Propagule pressure cannot always overcome biotic resistance: the role of density-dependent establishment in four invasive species. – Weed Res. 56: 208–218.
- Bastviken, D. T. E., Caraco, N. F. and Cole, J. J. 1998. Experimental measurements of zebra mussel (Dreissena polymorpha) impacts on phytoplankton community composition. – Freshwater Biol. 39: 375–386.
- Beaury, E. M., Finn, J. T., Corbin, J. D., Barr, V. and Bradley, B. A. 2020. Biotic resistance to invasion is ubiquitous across ecosystems of the United States. – Ecol. Lett. 23: 476–482.
- Bellard, C., Cassey, P. and Blackburn, T. M. 2016. Alien species as a driver of recent extinctions. – Biol. Lett. 12: 20150623.
- Bij de Vaate, A., Jazdzewski, K., Ketelaars, H. A. M., Gollasch, S. and Van der Velde, G. 2002. Geographical patterns in range extension of Ponto-Caspian macroinvertebrate species in Europe. – Can. J. Fish. Aquat. Sci. 59: 1159–1174.
- Blackburn, T. M., Prowse, T. A. A., Lockwood, J. L. and Cassey, P. 2013. Propagule pressure as a driver of establishment success in deliberately introduced exotic species: fact or artefact? – Biol. Invas. 15: 1459–1469.
- Blackburn, T. M. et al. 2014. A unified classification of alien species based on the magnitude of their environmental impacts. – PLoS Biol. 12: e1001850.
- Borenstein, M., Higgins, J. P., Hedges, L. V. and Rothstein, H. R. 2017. Basics of meta-analysis: I2 is not an absolute measure of heterogeneity. – Res. Synth. Methods 8: 5–18.
- Borenstein, M., Hedges, L. V., Higgins, J. P. and Rothstein, H. R. 2021. Introduction to meta-analysis. – Wiley.
10.1002/9781119558378 Google Scholar
- Brown, J. E. and Stepien, C. A. 2010. Population genetic history of the dreissenid mussel invasions: expansion patterns across North America. – Biol. Invas. 12: 3687–3710.
- Brown, J. L., Bennett, J. R. and French, C. M. 2017. SDMtoolbox 2.0: the next generation Python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. – Peer J. 5: e4095.
- Burlakova, L. E., Karatayev, A. Y. and Padilla, D. K. 2000. The impact of Dreissena polymorpha (Pallas) invasion on unionid bivalves. – Int. Rev. Hydrobiol. 85: 529–541.
- Burlakova, L. E., Karatayev, A. Y. and Padilla, D. K. 2006. Changes in the distribution and abundance of Dreissena polymorpha within lakes through time. – Hydrobiologia 571: 133–146.
- Burlakova, L. E., Karatayev, A. Y., Boltovskoy, D. and Correa, N. M. 2023. Ecosystem services provided by the exotic bivalves Dreissena polymorpha, D. rostriformis bugensis and Limnoperna fortunei. – Hydrobiologia 850: 2811–2854.
- Byers, J. E. 2002. Impact of non-indigenous species on natives enhanced by anthropogenic alteration of selection regimes. – Oikos 97: 449–458.
- Caffrey, J. et al. 2014. Tackling invasive alien species in Europe: the top 20 issues. – Manage. Biol. Invas. 5: 1–20.
- Capinha, C., Essl, F., Seebens, H., Moser, D. and Pereira, H. M. 2015. The dispersal of alien species redefines biogeography in the Anthropocene. – Science 348: 1248–1251.
- Carrier-Belleau, C., Pascal, L., Nozais, C. and Archambault, P. 2022. Tipping points and multiple drivers in changing aquatic ecosystems: a review of experimental studies. – Limnol. Oceanogr. 67: S312–S330.
- Carvalho, J., Garrido-Maestu, A., Azinheiro, S., Fuciños, P., Barros-Velázquez, J., De Miguel, R. J., Gros, V. and Prado, M. 2021. Faster monitoring of the invasive alien species (IAS) Dreissena polymorpha in river basins through isothermal amplification. – Sci. Rep. 11: 10175.
- Cohen, J. 1988. Statistical power analysis for the behavioral sciences.– Current directions in psychological science 1: 98–101.
- Cornes, R. C., van der Schrier, G., van den Besselaar, E. J. M. and Jones, P. D. 2018. An ensemble version of the E-OBS temperature and precipitation data sets. – JGR Atmos. 123: 9391–9409.
10.1029/2017JD028200 Google Scholar
- Coughlan, N. E., Cunningham, E. M., Potts, S., McSweeney, D., Healey, E., Dick, J. T. A., Vong, G. Y. W., Crane, K., Caffrey, J. M., Lucy, F. E., Davis, E. and Cuthbert, R. N. 2020. Steam and flame applications as novel methods of population control for invasive Asian clam (Corbicula fluminea) and zebra mussel (Dreissena polymorpha). – Environ. Manage. 66: 654–663.
- Crane, K., Coughlan, N. E., Cuthbert, R. N., Dick, J. T. A., Kregting, L., Ricciardi, A., MacIsaac, H. J. and Reid, N. 2020. Friends of mine: an invasive freshwater mussel facilitates growth of invasive macrophytes and mediates their competitive interactions. – Freshwater Biol. 65: 1063–1072.
- Crane, K., Kregting, L., Coughlan, N. E., Cuthbert, R. N., Ricciardi, A., MacIsaac, H. J., Dick, J. T. A. and Reid, N. 2022. Abiotic and biotic correlates of the occurrence, extent and cover of invasive aquatic Elodea nuttallii. – Freshwater Biol. 67: 1559–1570.
- Cressie, N. A. C. 1993. Statistics for spatial data. – Wiley.
10.1002/9781119115151 Google Scholar
- Crooks, J. A. and Rilov, G. 2009. The establishment of invasive species. – In: Rilov, G. and Crooks, J. A. (eds), Biological invasions in marine ecosystems. Springer, pp. 173–175.
10.1007/978-3-540-79236-9_9 Google Scholar
- Cuthbert, R. N. et al. 2021. Global economic costs of aquatic invasive alien species. – Sci. Total Environ. 775: 145238.
- Darwall, W. et al. 2018. The alliance for freshwater life: a global call to unite efforts for freshwater biodiversity science and conservation. – Aquat. Conserv. Mar. Freshwater Ecosyst. 28: 1015–1022.
- Dölle, K. and Kurzmann, D. E. 2020. The freshwater mollusk Dreissena polymorpha (zebra mussel) – a review: living, prospects and jeopardies. – Asian J. Environ. Ecol. 13: 1–17.
- Effler, S. W., Brooks, C. M., Whitehead, K., Wagner, B., Doerr, S. M., Perkins, M., Siegfried, C. A., Walrath, L. and Canale, R. P. 1996. Impact of zebra mussel invasion on river water quality. – Water Environ. Res. 68: 205–214.
- Emery-Butcher, H. E., Beatty, S. J. and Robson, B. J. 2020. The impacts of invasive ecosystem engineers in freshwaters: a review. – Freshwater Biol. 65: 999–1015.
- Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J. and Taylor, K. E. 2016. Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization. – Geosci. Model Dev. 9: 1937–1958.
- Fahnenstiel, G. L., Lang, G. A., Nalepa, T. F. and Johengen, T. H. 1995. Effects of zebra mussel (Dreissena polymorpha) colonization on water quality parameters in Saginaw Bay, Lake Huron. – J. Great Lakes Res. 21: 435–448.
- Feld, C. K., Segurado, P. and Gutiérrez-Cánovas, C. 2016. Analysing the impact of multiple stressors in aquatic biomonitoring data: a ‘cookbook' with applications in R. – Sci. Total Environ. 573: 1320–1339.
- Fick, S. E. and Hijmans, R. J. 2017. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. – Int. J. Climatol. 37: 4302–4315.
- Godoy, O. 2019. Coexistence theory as a tool to understand biological invasions in species interaction networks: implications for the study of novel ecosystems. – Funct. Ecol. 33: 1190–1201.
- GRASS Development Team 2017. Geographic resources analysis support system (GRASS GIS) software, version 7.2. – Open Source Geospatial Foundation. http://grass.osgeo.org
- Grizzetti, B., Lanzanova, D., Liquete, C., Reynaud, A. and Cardoso, A. C. 2016. Assessing water ecosystem services for water resource management. – Environ. Sci. Policy 61: 194–203.
- Grossinger, J. B. 1797. Universa historia physica regni Hungariae secundum tria regna naturae digesta: Tomus V, vol. 5. – Sumptibus & Typis Simonis Petri Weber.
- Haase, P. et al. 2023. The recovery of European freshwater biodiversity has come to a halt. – Nature 620: 582–588.
- Häder, D. P., Banaszak, A. T., Villafañe, V. E., Narvarte, M. A., González, R. A. and Helbling, E. W. 2020. Anthropogenic pollution of aquatic ecosystems: emerging problems with global implications. – Sci. Total Environ. 713: 136586.
- Hajima, T., Watanabe, M., Yamamoto, A., Tatebe, H., Noguchi, M. A., Abe, M., Ohgaito, R., Ito, A., Yamazaki, D., Okajima, H., Ito, A., Takata, K., Ogochi, K., Watanabe, S. and Kawamiya, M. 2020. Development of the Miroc-ES2L Earth system model and the evaluation of biogeochemical processes and feedbacks. – Geosci. Model Dev. 13: 2197–2244.
- Hallstan, S., Grandin, U. and Goedkoop, W. 2010. Current and modeled potential distribution of the zebra mussel (Dreissena polymorpha) in Sweden. – Biol. Invas. 12: 285–296.
- Hamed, K. H. and Rao, A. R. 1998. A modified Mann-Kendall trend test for autocorrelated data. – J. Hydrol. 204: 182–196.
- Harrow-Lyle, T. and Kirkwood, A. E. 2020. The invasive macrophyte Nitellopsis obtusa may facilitate the invasive mussel Dreissena polymorpha and Microcystis blooms in a large, shallow lake. – Can. J. Fish. Aquat. Sci. 77: 1201–1208.
- Hasan, S. S., Zhen, L., Miah, M. G., Ahamed, T. and Samie, A. 2020. Impact of land use change on ecosystem services: a review. – Environ. Dev. 34: 100527.
- Haubrock, P. J., Oficialdegui, F. J., Zeng, Y., Patoka, J., Yeo, D. C. J. and Kouba, A. 2021a. The redclaw crayfish: a prominent aquaculture species with invasive potential in tropical and subtropical biodiversity hotspots. – Rev. Aquacult. 13: 1488–1530.
- Haubrock, P. J., Turbelin, A. J., Cuthbert, R. N., Novoa, A., Taylor, N. G., Angulo, E., Ballesteros-Mejia, L., Bodey, T. W., Capinha, C., Diagne, C., Essl, F., Golivets, M., Kirichenko, N., Kourantidou, M., Leroy, B., Renault, D., Verbrugge, L. and Courchamp, F. 2021b. Economic costs of invasive alien species across Europe. – NeoBiota 67: 153–190.
- Haubrock, P. J., Cuthbert, R. N., Ricciardi, A., Diagne, C. and Courchamp, F. 2022a. Economic costs of invasive bivalves in freshwater ecosystems. – Divers. Distrib. 28: 1010–1021.
- Haubrock, P. J. et al. 2022b. Invasion impacts and dynamics of a European-wide introduced species. – Global Change Biol. 28: 4620–4632.
- Haubrock, P. J. et al. 2023. Data from: Understanding the complex dynamics of zebra mussel invasions over several decades in European rivers: drivers, impacts and predictions. – Github, https://github.com/IsmaSA/Dreissena-polymorpha.
- Havel, J. E., Lee, C. E. and Vander Zanden, M. J. 2005. Do reservoirs facilitate invasions into landscapes? – BioScience 55: 518–525.
- Heino, J., Virkkala, R. and Toivonen, H. 2009. Climate change and freshwater biodiversity: detected patterns, future trends and adaptations in northern regions. – Biol. Rev. 84: 39–54.
- Hellmann, J. J., Byers, J. E., Bierwagen, B. G. and Dukes, J. S. 2008. Five potential consequences of climate change for invasive species. – Conserv. Biol. 22: 534–543.
- Higgins, S. N. and Vander Zanden, M. J. V. 2010. What a difference a species makes: a meta-analysis of dreissenid mussel impacts on freshwater ecosystems. – Ecol. Monogr. 80: 179–196.
- Holland, R. E. 1993. Changes in planktonic diatoms and water transparency in Hatchery Bay, bass Island area, western Lake Erie since the establishment of the zebra mussel. – J. Great Lakes Res. 19: 617–624.
- Hufbauer, R. A., Facon, B., Ravigné, V., Turgeon, J., Foucaud, J., Lee, C. E., Rey, O. and Estoup, A. 2012. Anthropogenically induced adaptation to invade (AIAI): contemporary adaptation to human-altered habitats within the native range can promote invasions. – Evol. Appl. 5: 89–101.
- Hui, C., Richardson, D. M., Landi, P., Minoarivelo, H. O., Garnas, J. and Roy, H. E. 2016. Defining invasiveness and invasibility in ecological networks. – Biol. Invas. 18: 971–983.
- Hulme, P. E. 2009. Trade, transport and trouble: managing invasive species pathways in an era of globalization. – J. Appl. Ecol. 46: 10–18.
- Hünicken, L. A., Sylvester, F. and Bonel, N. 2022. Fitness-related traits are maximized in recently introduced, slow-growing populations of a global invasive clam. – Invertebr. Biol. 141: e12364.
- IPCC 2021. In: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R. and Zhou, B. (eds), Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. – Cambridge Univ. Press.
- Ishwaran, H. and Kogalur, U. 2022. Fast unified random forests for survival, regression, and classification (RF-SRC). – R package ver. 3.1.1. https://cloud.r-project.org/web/packages/spikeslab/spikeslab.pdf
- Jackson, M. C., Ruiz-Navarro, A. and Britton, J. R. 2015. Population density modifies the ecological impacts of invasive species. – Oikos 124: 880–887.
- Jackson, M. C., Loewen, C. J., Vinebrooke, R. D. and Chimimba, C. T. 2016. Net effects of multiple stressors in freshwater ecosystems: a meta-analysis. – Global Change Biol. 22: 180–189.
- Jarić, I., Lennox, R. J., Kalinkat, G., Cvijanović, G. and Radinger, J. 2019. Susceptibility of European freshwater fish to climate change: species profiling based on life-history and environmental characteristics. – Global Change Biol. 25: 448–458.
- Jasiewicz, J. and Metz, M. 2011. A new GRASS GIS toolkit for Hortonian analysis of drainage networks. – Comput. Geosci. 37: 1162–1173.
- Jurca, T., Donohue, L., McGoff, E., Tunali, S. Y. and Irvine, K. 2021. Unravelling the effect of multiple stressors on ecological structure of littoral lake macroinvertebrates. – Int. Rev. Hydrobiol. 106: 202–212.
- Karatayev, A. Y. and Burlakova, L. E. 2022. What we know and don't know about the invasive zebra (Dreissena polymorpha) and quagga (Dreissena rostriformis bugensis) mussels. – Hydrobiologia, https://doi.org/10.1007/s10750-022-04950-5
- Karatayev, A. Y., Burlakova, L. E., Mastitsky, S. E., Padilla, D. K. and Mills, E. L. 2011. Contrasting rates of spread of two congeners, Dreissena polymorpha and Dreissena rostriformis bugensis, at different spatial scales. – J. Shellfish Res. 30: 923–931.
- Klein, E. S. and Thurstan, R. H. 2016. Acknowledging long-term ecological change: the problem of shifting baselines. – In: Máñez, K. S. and Poulsen, B. (eds), Perspectives on oceans past. Springer , pp. 11–29.
- Lehner, B., Messager, M. L., Korver, M. C. and Linke, S. 2022. Global hydro-environmental lake characteristics at high spatial resolution. – Sci. Data 9: 1–19.
- Leung, B. and Mandrak, N. E. 2007. The risk of establishment of aquatic invasive species: joining invasibility and propagule pressure. – Proc. R. Soc. B 274: 2603–2609.
- Linares, M. S., Macedo, D. R., Massara, R. L. and Callisto, M. 2020. Why are they here? Local variables explain the distribution of invasive mollusk species in Neotropical hydropower reservoirs. – Ecol. Indic. 117: 106674.
- Linke, S., Hermoso, V. and Januchowski-Hartley, S. 2019. Toward process-based conservation prioritizations for freshwater ecosystems. – Aquat. Conserv. Mar. Freshwater Ecosyst. 29: 1149–1160.
- Lockwood, J. L., Cassey, P. and Blackburn, T. M. 2009. The more you introduce the more you get: the role of colonization pressure and propagule pressure in invasion ecology. – Divers. Distrib. 15: 904–910.
- Lockwood, J. L., Hoopes, M. F. and Marchetti, M. P. 2013. Invasion ecology. – Wiley.
- Lorencová, E., Beran, L., Horsáková, V. and Horsák, M. 2015. Invasion of freshwater molluscs in the Czech Republic: time course and environmental predictors. – Malacologia 59: 105–120.
- Luoma, J. A., Severson, T. J., Barbour, M. T. and Wise, J. K. 2018. Effects of temperature and exposure duration on four potential rapid-response tools for zebra mussel (Dreissena polymorpha) eradication. – Manage. Biol. Invas. 9: 425–438.
- Mainka, S. A. and Howard, G. W. 2010. Climate change and invasive species: double jeopardy. – Integr. Zool. 5: 102–111.
- Maire, A., Thierry, E., Viechtbauer, W. and Daufresne, M. 2019. Poleward shift in large-river fish communities detected with a novel meta-analysis framework. – Freshwater Biol. 64: 1143–1156.
- MaMahon, R. F. and Ussary, T. A. 1995. Thermal tolerance of zebra mussels (Dreissena polymorpha) relative to rate of temperature increase and acclimation temperature. – Dept of Biology, Texas Univ.
- Mathakutha, R., Steyn, C., le Roux, P. C., Blom, I. J., Chown, S. L., Daru, B. H., Ripley, B. S., Louw, A. and Greve, M. 2019. Invasive species differ in key functional traits from native and non-invasive alien plant species. – J. Veg. Sci. 30: 994–1006.
- Naimi, B. and Araújo, M. B. 2016. sdm: a reproducible and extensible R platform for species distribution modelling. – Ecography 39: 368–375.
- Naimi, B., Hamm, N. A. S., Groen, T. A., Skidmore, A. K. and Toxopeus, A. G. 2014. Where is positional uncertainty a problem for species distribution modelling? – Ecography 37: 191–203.
- Nathan, R. J., Nandakumar, N. and Smith, W. E. 1999. On the application of generalised additive models to the detection of trends in hydrologic time series data. – In: Water 99: joint congress; 25th hydrology and water resources symposium, 2nd international conference on water resources and environment research; handbook and proceedings. Institution of Engineers, Australia, p. 169.
- Navarro, D. 2021. Package ‘lsr' https://github.com/djnavarro/lsr
- Navarro, A., Sánchez-Fontenla, J., Cordero, D., Faria, M., Peña, J. B., Saavedra, C., Blázquez, M., Ruíz, O., Ureña, R., Torreblanca, A., Barata, C. and Piña, B. 2013. Genetic and phenoptypic differentiation of zebra mussel populations colonizing Spanish river basins. – Ecotoxicology 22: 915–928.
- Nekola, J. C., Hutchins, B. T., Schofield, A., Najev, B. and Perez, K. E. 2019. Caveat consumptor notitia museo: let the museum data user beware. – Global Ecol. Biogeogr. 28: 1722–1734.
10.1111/geb.12995 Google Scholar
- Nentwig, W., Bacher, S., Kumschick, S., Pyšek, P. and Vilà, M. 2018. More than ‘100 worst' alien species in Europe. – Biol. Invas. 20: 1611–1621.
- Neteler, M., Bowman, M. H., Landa, M. and Metz, M. 2012. GRASS GIS: a multi-purpose open source GIS. – Environ. Modell. Softw. 31: 124–130.
- Padilla, D. K. 1997. The effects of Dreissena polymorpha (Pallas) invasion on aquatic communities in eastern Europe. – J. Shellfish Res. 16: 187–203.
- Peñarrubia, L., Vidal, O., Viñas, J., Pla, C. and Sanz, N. 2016. Genetic characterization of the invasive zebra mussel (Dreissena polymorpha) in the Iberian Peninsula. – Hydrobiologia 779: 227–242.
- Pham, H. V., Torresan, S., Critto, A. and Marcomini, A. 2019. Alteration of freshwater ecosystem services under global change–a review focusing on the Po River basin (Italy) and the Red River basin (Vietnam). – Sci. Total Environ. 652: 1347–1365.
- Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. and Blair, M. E. 2017. Opening the black box: an open-source release of Maxent. – Ecography 40: 887–893.
- Pilotto, F., Sousa, R. and Aldridge, D. C. 2016. Is the body condition of the invasive zebra mussel (Dreissena polymorpha) enhanced through attachment to native freshwater mussels (Bivalvia, Unionidae)? – Sci. Total Environ. 553: 243–249.
- Pilotto, F. et al. 2020. Meta-analysis of multidecadal biodiversity trends in Europe. – Nat. Commun. 11: 3486.
- Pyšek, P. and Prach, K. 1995. Invasion dynamics of Impatiens glandulifera – a century of spreading reconstructed. – Biol. Conserv. 74: 41–48.
- Rajagopal, S., Pollux, B. J. A., Peters, J. L., Cremers, G., Moon-van der Staay, S. Y., van Alen, T., Eygensteyn, J., van Hoek, A., Palau, A., bij de Vaate, A. and van der Velde, G. 2009. Origin of Spanish invasion by the zebra mussel, Dreissena polymorpha (Pallas, 1771) revealed by amplified fragment length polymorphism (AFLP) fingerprinting. – Biol. Invas. 11: 2147–2159.
- Reid, A. J., Carlson, A. K., Creed, I. F., Eliason, E. J., Gell, P. A., Johnson, P. T. J., Kidd, K. A., MacCormack, T. J., Olden, J. D., Ormerod, S. J., Smol, J. P., Taylor, W. W., Tockner, K., Vermaire, J. C., Dudgeon, D. and Cooke, S. J. 2019. Emerging threats and persistent conservation challenges for freshwater biodiversity. – Biol. Rev. 94: 849–873.
- Rejmánek, M., Richardson, D. M. and Pyšek, P. 2013. Plant invasions and invasibility of plant communities. – In: van der Maarel, E. and Franklin, J. (eds), Vegetation ecology. Wiley, pp. 387–424.
10.1002/9781118452592.ch13 Google Scholar
- Ricciardi, A. 2003. Predicting the impacts of an introduced species from its invasion history: an empirical approach applied to zebra mussel invasions. – Freshwater Biol. 48: 972–981.
- Ricciardi, A. and MacIsaac, H. J. 2000. Recent mass invasion of the North American Great Lakes by Ponto–Caspian species. – Trends Ecol. Evol. 15: 62–65.
- Ricciardi, A., Rasmussen, J. B. and Whoriskey, F. G. 1995. Predicting the intensity and impact of Dreissena infestation on native unionid bivalves from Dreissena field density. – Can. J. Fish. Aquat. Sci. 52: 1449–1461.
- Ricciardi, A., Whoriskey, F. G. and Rasmussen, J. B. 1997. The role of the zebra mussel (Dreissena polymorpha) in structuring macroinvertebrate communities on hard substrata. – Can. J. Fish. Aquat. Sci. 54: 2596–2608.
- Ricciardi, A., Neves, R. J. and Rasmussen, J. B. 1998. Impending extinctions of North American freshwater mussels (Unionoida) following the zebra mussel (Dreissena polymorpha) invasion. – J. Anim. Ecol. 67: 613–619.
- Ricciardi, A., Blackburn, T. M., Carlton, J. T., Dick, J. T. A., Hulme, P. E., Iacarella, J. C., Jeschke, J. M., Liebhold, A. M., Lockwood, J. L., MacIsaac, H. J., Pyšek, P., Richardson, D. M., Ruiz, G. M., Simberloff, D., Sutherland, W. J., Wardle, D. A. and Aldridge, D. C. 2017. Invasion science: a horizon scan of emerging challenges and opportunities. – Trends Ecol. Evol. 32: 464–474.
- Ricciardi, A., Iacarella, J. C., Aldridge, D. C., Blackburn, T. M., Carlton, J. T., Catford, J. A., Dick, J. T. A., Hulme, P. E., Jeschke, J. M., Liebhold, A. M., Lockwood, J. L., MacIsaac, H. J., Meyerson, L. A., Pyšek, P., Richardson, D. M., Ruiz, G. M., Simberloff, D., Vilà, M. and Wardle, D. A. 2021. Four priority areas to advance invasion science in the face of rapid environmental change. – Environ. Rev. 29: 119–141.
10.1139/er-2020-0088 Google Scholar
- Rolla, M., Consuegra, S., Hall, D. J. and Garcia de Leaniz, C. 2020a. Seasonal and spatial variation in growth and abundance of zebra mussel (Dreissena polymorpha) in a recently invaded artificial lake: implications for management. – Front. Ecol. Evol. 8: 159.
- Rolla, M., Consuegra, S. and de Leaniz, C. 2020b. Predator recognition and anti-predatory behaviour in a recent aquatic invader, the killer shrimp (Dikerogammarus villosus). – Aquat. Invas. 15: 482–496.
- Ruiz-Navarro, A., Gillingham, P. K. and Britton, J. R. 2016. Predicting shifts in the climate space of freshwater fishes in Great Britain due to climate change. – Biol. Conserv. 203: 33–42.
- Sala, O. E., Chapin III, F. S., Armesto, J. J., Berlow, E., Bloomfield, J., Dirzo, R., Huber-Sanwald, E., Huenneke, L. F., Jackson, R. B., Kinzig, A., Leemans, R. S., Lodge, D. M., Mooney, H. A., Oesterheld, M., Poff, N. L., Sykes, M. T., Walker, B. H., Walker, M. and Wall, D. H. 2000. Global biodiversity scenarios for the year 2100. – Science 287: 1770–1774.
- Sara, G., Porporato, E. M. D., Mangano, M. C. and Mieszkowska, N. 2018. Multiple stressors facilitate the spread of a non-indigenous bivalve in the Mediterranean Sea. – J. Biogeogr. 45: 1090–1103.
- Schloesser, D. W. 1996. Mitigation of unionid mortality caused by zebra mussel infestation: cleaning of unionids. – N. Am. J. Fish. Manage. 16: 942–946.
10.1577/1548-8675(1996)016<0942:MOUMCB>2.3.CO;2 Google Scholar
- Seebens, H. et al. 2017. No saturation in the accumulation of alien species worldwide. – Nat. Commun. 8: 14435.
- Seebens, H. et al. 2018. Global rise in emerging alien species results from increased accessibility of new source pools. – Proc. Natl Acad. Sci. USA 115: E2264–E2273.
- Seebens, H., Clarke, D. A., Groom, Q., Wilson, J. R. U., García-Berthou, E., Kühn, I., Roigé, M., Pagad, S., Essl, F., Vicente, J., Winter, M. and McGeoch, M. 2020a. A workflow for standardising and integrating alien species distribution data. – NeoBiota 59: 39–59.
- Seebens, H., Bacher, S., Blackburn, T. M., Capinha, C., Dawson, W., Dullinger, S., Genovesi, P., Hulme, P. E., van Kleunen, M., Kühn, I., Jeschke, J. M., Lenzner, B., Liebhold, A. M., Pattison, Z., Pergl, J., Pyšek, P., Winter, M. and Essl, F. 2020b. Projecting the continental accumulation of alien species through to 2050. – Global Change Biol. 27: 970–982.
- Shirey, V., Seppälä, S., Branco, V. V. and Cardoso, P. 2019. Current GBIF occurrence data demonstrates both promise and limitations for potential red listing of spiders. – Biodivers. Data J. 7: e47369.
- Simberloff, D. 2006. Invasional meltdown 6 years later: important phenomenon, unfortunate metaphor, or both? – Ecol. Lett. 9: 912–919.
- Simberloff, D. and Von Holle, B. 1999. Positive interactions of nonindigenous species: invasional meltdown? – Biol. Invas. 1: 21–32.
10.1023/A:1010086329619 Google Scholar
- Simberloff, D., Ricciardi, A. and Elton, C. S. 2020. The ecology of invasions by animals and plants. – Springer.
- Simpson, G. L. 2018. Modelling palaeoecological time series using generalised additive models. – Front. Ecol. Evol. 6: 149.
- Sinnatamby, R. N., Mayer, B., Kruk, M. K., Rood, S. B., Farineau, A. and Post, J. R. 2020. Considering multiple anthropogenic threats in the context of natural variability: ecological processes in a regulated riverine ecosystem. – Ecohydrology 13: e2217.
- Son, M. O. 2007. Native range of the zebra mussel and quagga mussel and new data on their invasions within the Ponto-Caspian Region. – Aquat. Invas. 2: 174–184.
- Soto, I. et al. 2022. Tracking a killer shrimp: Dikerogammarus villosus invasion dynamics across Europe. – Divers. Distrib. 29: 157–172.
- Soto, I. et al. 2023a. The faunal Ponto-Caspianization of central and western European waterways. – Biol. Invas. 25: 2613–2629.
- Soto, I., Ahmed, D. A., Balzani, P., Cuthbert, R. N. and Haubrock, P. J. 2023b. Sigmoidal curves reflect impacts and dynamics of aquatic invasive species. – Sci. Total Environ. 872: 161818.
- Sousa, R., Gutiérrez, J. L. and Aldridge, D. C. 2009. Non-indigenous invasive bivalves as ecosystem engineers. – Biol. Invas. 11: 2367–2385.
- Sousa, R., Pilotto, F. and Aldridge, D. C. 2011. Fouling of European freshwater bivalves (Unionidae) by the invasive zebra mussel (Dreissena polymorpha). – Freshwater Biol. 56: 867–876.
- Sousa, R., Novais, A., Costa, R. and Strayer, D. L. 2014. Invasive bivalves in fresh waters: impacts from individuals to ecosystems and possible control strategies. – Hydrobiologia 735: 233–251.
- Stepien, C. A., Grigorovich, I. A., Gray, M. A., Sullivan, T. J., Yerga-Woolwine, S. and Kalayci, G. 2013. Evolutionary, biogeographic, and population genetic relationships of dreissenid mussels, with revision of component taxa. – In: Nalepa, T. F. and Schloesser, D. W. (eds), Quagga and zebra mussels: biology, impacts, and control. CRC press, pp. 403–444.
- Strayer, D. L. 2009. Twenty years of zebra mussels: lessons from the mollusk that made headlines. – Front. Ecol. Environ. 7: 135–141.
- Strayer, D. L. 2010. Alien species in fresh waters: ecological effects, interactions with other stressors, and prospects for the future. – Freshwater Biol. 55: 152–174.
- Strayer, D. L. and Smith, L. C. 1993. Distribution of the zebra mussel (Dreissena polymorpha) in estuaries and brackish waters. – In: Nalepa, T. F. and Schloesser, D. W. (eds), Zebra mussels: biology, impacts, and control. Lewis Publishers, pp. 715–727.
- Strayer, D. L., Cid, N. and Malcom, H. M. 2011. Long-term changes in a population of an invasive bivalve and its effects. – Oecologia 165: 1063–1072.
- Strayer, D. L., D'Antonio, C. M., Essl, F., Fowler, M. S., Geist, J., Hilt, S., Jarić, I., Jöhnk, K., Jones, C. G., Lambin, X., Latzka, A. W., Pergl, J., Pyšek, P., Robertson, P., von Schmalensee, M., Stefansson, R. A., Wright, J. and Jeschke, J. M. 2017. Boom-bust dynamics in biological invasions: towards an improved application of the concept. – Ecol. Lett. 20: 1337–1350.
- Swart, N. C. et al. 2019. The Canadian earth system model ver. 5 (CanESM5.0.3). – Geosci. Model Dev. 12: 4823–4873.
- Thresher, R., Proctor, C., Ruiz, G., Gurney, R., MacKinnon, C., Walton, W., Rodriguez, L. and Bax, N. 2003. Invasion dynamics of the European shore crab, Carcinus maenas, in Australia. – Mar. Biol. 142: 867–876.
- Tickner, D. et al. 2020. Bending the curve of global freshwater biodiversity loss: an emergency recovery plan. – BioScience 70: 330–342.
- Trolle, D., Nielsen, A., Andersen, H. E., Thodsen, H., Olesen, J. E., Børgesen, C. D., Refsgaard, J. C., Sonnenborg, T. O., Karlsson, I. B., Christensen, J. P., Markager, S. and Jeppesen, E. 2019. Effects of changes in land use and climate on aquatic ecosystems: coupling of models and decomposition of uncertainties. – Sci. Total Environ. 657: 627–633.
- Tyrrell, M. C. and Byers, J. E. 2007. Do artificial substrates favor nonindigenous fouling species over native species? – J. Exp. Mar. Biol. Ecol. 342: 54–60.
- van Kuijk, T., Biesmeijer, J. C., van der Hoorn, B. B. and Verdonschot, P. F. M. 2021. Functional traits explain crayfish invasive success in the Netherlands. – Sci. Rep. 11: 2772.
- Viechtbauer, W. 2010. Conducting meta-analyses in R with the metafor package. – J. Stat. Softw. 36: 1–48.
- Vilà, M., Basnou, C., Gollasch, S., Josefsson, M., Pergl, J. and Scalera, R. 2009. One hundred of the most invasive alien species in Europe. – In: Hulme, P. E. (ed.), Handbook of alien species in Europe. Springer, pp. 265–268.
10.1007/978-1-4020-8280-1_12 Google Scholar
- Vollmer, D. et al. 2018. Integrating the social, hydrological and ecological dimensions of freshwater health: the freshwater health index. – Sci. Total Environ. 627: 304–313.
- Ward, J. M. and Ricciardi, A. 2007. Impacts of Dreissena invasions on benthic macroinvertebrate communities: a meta-analysis. – Divers. Distrib. 13: 155–165.
- Warren, D. L., Wright, A. N., Seifert, S. N. and Shaffer, H. B. 2014. Incorporating model complexity and spatial sampling bias into ecological niche models of climate change risks faced by 90 California vertebrate species of concern. – Divers. Distrib. 20: 334–343.
- Wawrzyniak-Wydrowska, B., Radziejewska, T., Skrzypacz, A. and Woźniczka, A. 2019. Two non-indigenous dreissenids (Dreissena polymorpha and D. rostriformis bugensis) in a southern baltic coastal lagoon: variability in populations of the ‘old' and a ‘new' immigrant. – Front. Mar. Sci. 6: 76.
- Wijesiri, B., Deilami, K. and Goonetilleke, A. 2018. Evaluating the relationship between temporal changes in land use and resulting water quality. – Environ. Pollut. 234: 480–486.
- Wimbush, J., Frischer, M. E., Zarzynski, J. W. and Nierzwicki-Bauer, S. A. 2009. Eradication of colonizing populations of zebra mussels (Dreissena polymorpha) by early detection and SCUBA removal: Lake George, NY. – Aquat. Conserv. Mar. Freshwater Ecosyst. 19: 703–713.
- Wood, S. and Wood, M. S. 2015. Package ‘mgcv'. – R package ver. 1: 729.
- Woodward, G., Perkins, D. M. and Brown, L. E. 2010. Climate change and freshwater ecosystems: impacts across multiple levels of organization. – Phil. Trans. R. Soc. B 365: 2093–2106.
- Yamazaki, D., Ikeshima, D., Sosa, J., Bates, P. D., Allen, G. H. and Pavelsky, T. M. 2019. Merit hydro: a high-resolution global hydrography map based on latest topography dataset. – Water Resour. Res. 55: 5053–5073.
- ZMIS 2001. Zebra mussel information system. – US Army Engineer Research and Development Center (ERDC), Waterways Experiment Station.